

IMT – The Journey

IMT – Key Enablers

- The ever growing **Need for Speed**
- Need for <u>Capacity</u> multiple devices
- Need for <u>reduced Latency</u> targets for <1ms
- Secure all <u>IP based</u> mobile broadband solution
- Quality of Service/Experience (QoS/QoE).
 <u>One size doesn't fit all</u>. Different users have different expectation.
- Provide freedom through mobility

IMT - Challenges

- Radio Frequency is a finite resource have to do with what we have.
- RF cannot be contained in a single medium (unlike light in fiber), causes spillage (interference)- Spectrum Management essential
- Impacted by environmental conditions signal attenuation, loss of data. Allocation of appropriate spectrum to add effeciency.
- Payload packing (modulation) needs to be made efficient to extract greater spectral efficiencies from same (RF) resource

The Ecosystem

Some of the major components (but not limited to) for successful/sustainable evolution on IMT are:

- Spectrum harmonized for Global reach and adoptability. Harmonizing spectrum minimizes interference across national borders, increases the size of mobile markets for equipment and services thereby reducing costs, and enables international roaming.
- Devices Range and Affordability

Spectrum – Harmonization (LTE)

- Release of new sets of frequency bands (eg: Digital Dividend)
- Re-farming existing 2G/3G spectrums
- ITU assigned bands 2600 MHz

Allocation of Spectrum

	Region 1 (Europe)	Region 2 (USA)
1 st Generation	900 MHz (880–915/925–960)	850 MHz (824-849/869-894)
2 nd Generation	1800 MHz (1710–1785/1805–1880)	1900 MHz (1850–1910/1930–1990)
3 rd Generation	2 GHz (1920-1980/2110-2170)	AWS: (1710-1755/2110-2155)
4 th Generation	800 MHz (832-862/791-821)	700 MHz: (698–716/728–746 and
	2.6 GHz (2500–2570/2620–2690)	777–788/746–757)
		2.6 GHz (2495–2690—unpaired)

How are the Operators Managing the Evolution?

MAPPING 4G-LTE DEPLOYMENTS BY FREQUENCY BANDS

451 operators have commercially launched 4G-LTE networks across 151 countries worldwide as of the end of December 2015

Source: GSA

bluesku @

4G-LTE deployments by frequency bands, 2015

What is happening in the Pacific?

		, 4			U.	SA		イ	ANZ			1	Pacific Islanbds											
o Band	Duplex Mode	Freq (MHz)	されて	US_AT&T	US_T-Mobile	US_Sprint	US_Verizon		Aus_Telstra	Aus_Vodafone	Aus_Optus	Aus_NBM Co	NZ_Spark	NZ_2 Deg	NZ_Vodafone	Y RATINA	Fj_Vodafone	Fj_Digicel	Fj_Telecom	PNG_Digicel	PNG_Telikom	Vnu_Wantok	Vnu_Telecom	Vnu - Digicel
4	FDD	1700	. >																					
12	FDD	700	XZ	LY		0	V	A AF																
13	FDD	700																						
17	FDD	700																						
25	FDD	1900	\sim	1			12																	
26	FDD	850	11-	1			A.																	
41	TDD	2500	9 ·		1		Ar.																	
2		1000		+		1 2	The	B.								3 ABY				10				пN
5	FDD	1000 850	10		R]								7		1 -				-		
7		2600	5								-	~		-1				- 1	22			~		1
/ 28	FDD	700	CAP J	24		2		0		1		Ŷ									~			
40		2300	200									~~	-		×7				V	2	1			\geq
40		2300			K - 1	\sim	\frown			6		-	-						5	V.	-			

Device Roadmap

GSA confirms 4,416 LTE user devices, researches new bands

February 12, 2016: The latest update to the Status of the LTE Ecosystem report published this week by GSA (Global mobile Suppliers Association) confirms accelerating growth of the LTE ecosystem and expansion in the availability and performance of LTE-Advanced devices. The report covers LTE FDD and TDD (TD-LTE) devices. 4,416 LTE user devices, including frequency and operator variants, from 369 suppliers are verified by GSA as announced in the market. 1,770 devices have been added to GSA's LTE devices database (GAMBoD) since February 2015, confirming 67% annual growth. The number of LTE device suppliers grew 34% in the same period.

LTE FDD		
800 MHz band 3	1,543 devices	◆ 1800 Mł
600 MHz band 7	1,381 devices	
00 MHz band 1	1,185 devices	
0 MHz band 20	812 devices	
WS band 4	727 devices	
00/1800/2600 tri-band	739 devices	
0 MHz band 5	684 devices	
0 MHz band 8	668 devices	
0 MHz bands 12 or 17	650 devices	
00 MHz band 2	535 devices	
0 MHz band 13	457 devices	
00 MHz band 25	194 devices	
PT700 band 28	139 devices	DD (APT)
00 MHz band 12	106 devices	

TELECOM TV

Growth of LTE-Advanced networks

Data: GSA Graphic: TelecomTV

23 cat-4: 100-150Mbit/s
102 cat-6: 151-300Mbit/s
17 cat-9: 301-450Mbit/s
5 cat-11: 451-600Mbit/s

Commercial LTE-Advanced or LTE-Advanced Pro networks

data correct as of July 2016

Future – Beyond Now... bluesky Solution LTE Advance

 3GPP Rel: 10 – Focuses on carrier Aggregation (CA). Receiving 2 of more carriers thru the same RX path (at UE) to increase down link thru put. Later the TX (from UE) can be done the same way to increase the Uplink thru-put

Frequency Band A Eg 700MHz Frequency Band B Eg 1800MHz Intra-band Non Contiguous

Non Contiguous

Future – Beyond Now... 5G

3GPP Rel: $15 \rightarrow 5G$ standards will be finalized by 2018 and expected service by 2020. *(ovum)*

5G Requirement – Some expectations

1-10Gbps connections to end points in the field (i.e. not theoretical maximum)

bluesky 😫

- 1 millisecond latency
- 10-100x number of connected devices
- Perception of 99.999% availability and of 100% coverage
- 90% reduction in network energy usage
- Up to 10 year battery life for low power, machine-type devices
- One of the key issues with the 5G requirements is that there are many different interested parties involved, each wanting their own needs to be met by the new 5G wireless system. This leads to the fact that not all the requirements form a coherent list. No one technology is going to be able to meet all the needs together.

"..that brings together people along with things, data, applications, transport systems and cities in a smart networked communications environment." - *The International Telecommunications Union's Secretary General, Houlin Zhao*

What is making the news....

TELECOM TV

Identifying harmonised spectrum for 5G

Data: various Graphic: TelecomTV

Europe: Radio Spectrum Policy Group

	Radio Spectrum Policy Gro	oup	
For nationwide and indoor coverage (already harmonised)	694-790MHz		
Primary band (with 400MHz) for the introduction of 5G pre-2020	3.4-3.8GHz		
WRC-15 band, one of 3 candidates for early European 5G	24.5-27.5GHz	USA: FCC	* <u>*</u> * <u>*</u> * <u>*</u> * <u>*</u> *
		27.5-28.35GHz	For small cell deployments
WRC-15 band, one of 3 candidates for early European 5G	31.8-33.4GHz		*^*^*^*^*
_		37-38.6GHz	For small cell deployments
		38.6-40GHz	Hybrid licensing scheme to include enterprise users
WRC-15 band, one of 3 candidates for early European 5G	40.5-43.5GHz		
		64-71GHz	For unlicensed use

From the Engineers...

TELECOM TV

The possible components for a new 5G air interface

Data: Rohde & Schwarz Graphic: TelecomTV

5G PHY and MAC layer building blocks	Candidates	
Spectrum	>6GHz, cmW, mmW	
Waveform	OFDM, GFDM, UFMC, FBMC, f-OFDM	
Multiple Access	OFDMA, SC-FDMA, NOMA, SCMA, RSMA	
Frame Structure	TTI configuration, Bandwidth	Air
Coding	LDPC, Turbo Codes, Polar Codes	Configuration
Modulation	BPSK, QPSK, 16QAM, 64QAM, 256QAM	
мімо	SISO, SU-MIMO, MU-MIMO, MMIMO, Beamforming	
Duplex Mode	FDD, TDD, Full Duplex	

From the Operator....

From the Industry....

TELECOM TV

Can we Wait for 5G to Arrive?

- ITU specified the requirements for 4G in 2008: vendors and operators started putting "4G" labels on equipment and services just months later.
- What's certain is that the IoT and Wearables market will continue to expand – and those of us working in the area will "find a way" to connect our products, whatever shape the standards eventually take.
- 5G is a wide, encompassing ideal, but there's no need to wait: the future starts now.

Thank You

